廖良生教授课题组
FUNSOM
导师语录


1.现代社会竞争激烈,因此,每个学生一定要提高自我核心竞争力;



2.每个学生要努力践行

“养天地正气,法古今完人“的苏大校训,力求将自己培养成德才兼备的现代青年;



3.我们要努力创造OLED技术的自主知识产权,在我国形成“养土鸡--喂土饲料--生土鸡蛋”的全自主产业链发展模式;



4.学术报告中所使用的PPT演示文稿,是报告人的学术面容。我们一定要认真学会如何作学术报告、如何准备高质量的演示文稿,为今后的事业发展,不断提高学术交流能力;




5.想问题时,要异想天开;做事情时,要脚踏实地。





3.B.K.Qasim,B.P.Wang,Y.P.Zhang,P.F.Li,Y.S.Wang, S.J.Li, S.T.Lee, L.S.Liao, W.Lei, Q.L.Bao, AFM, 2017
浏览数:83

Solution-processed extremely efficient multicolorperovskite light-emitting diodes utilizing doped electron transport layer

A specially designed n-type semiconductor consisting of Ca-doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high-performance multicolor perovskite light-emitting diodes (PeLEDs) fabricated using an all-solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub-bandgap turn-on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A−1 and 5.8% for red emission, 16 cd A−1 and 4.2% for yellow, and 21 cd A−1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W−1 for green light-emitting PeLED, 28 lm W−1 for yellow, and 36 lm W−1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two-step hot-casting technique that affords highly continuous (>95% coverage) and pinhole-free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m−2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite-based materials a step closer to practical application in multicolor light-emitting devices.